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Crops expanding from their centres of domestication towards a

wide range of agroclimatic regions has led to significant

phenotypic and genetic divergence between cultivated forms.

Since its domestication in the Fertile Crescent about 10 000 years

ago, barley accompanied the spread of agriculture into Europe

during the 5th and 6th millennia BC. It was subsequently

introduced to North America and Australia by European settlers

in the 17th and 18th centuries. The Australian growing season is

effectively determined by the soil moisture availability, which

is different from that in many European and North American

countries where barley is grown over the summer half of the year

with frequent rainfall events. Breeding activities are expected to

have shaped the barley genomes and selected genes for

adaptation to the relevant agroclimatic conditions. Elucidating

the genetic basis for adaptation to contrasting agroclimatic

conditions will advance our understanding of crop adaptation and

guide breeders in selecting varieties for future changing

environments.

In this study, we sequenced and de novo assembled the

genomes of two early barley varieties bred out in Australia,

namely “Clipper”, and “Stirling” (Figure S1A, Methods S1). The

assembly length of the Clipper and Stirling genomes are 4.28 Gb

and 4.26 Gb with a contig N50 of 39.4 Mb and 36.9 Mb,

respectively, (Table S1). In-situ Hi-C sequencing anchored 97% of

sequences to seven chromosomes in both assemblies (Figure S1B,

C). The whole-genome shotgun sequence of 56 barley cultivars

from Australia, Europe, and North America was first mapped to

the Clipper reference genome to investigate the modern barley

cultivars’ phylogenetic relationships and population structures

(Methods S2). Australian and North American barley show diverse

genetic differentiation patterns (Figure S2, Table S2-S6). The

various genetic differentiation patterns across chromosomes may

reflect the breeding selection targeting different genomic regions

in Australia and North America.

Barley breeding in Australia centred on selecting varieties with

fast development, that is, early flowering, to escape terminal heat

during the maturation stage (He et al., 2022). We examined gene

Presence/Absence variants (PAVs) between European, Australian,

and North American barley. We found that selecting early

flowering and photoperiod-sensitivity in Australia has enriched

phenology gene alleles with specific PAVs (Methods S3). Seventy

genes in Australian barley show a significant change in the

presence frequency compared with European barley (Table S7),

with 17 genes in the flowering pathways, including genes

involved in photoperiod and circadian clock (HvCK2a and

HvCO16), vernalisation (HvCBF10A), and meristem response

and development (HvSOC1, HvBM5, HvBM7) (Figure S2E).

We further compared the genomes of seven barley cultivars

(i.e., Clipper and Stirling from Australia, Igri, Barke and RGT

Planet from Europe, and Morex and Hockett from North America)

for the haplotypes of ten potential genes that may be associated

with flowering time and responsiveness to photoperiod and light
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intensity (Methods S4). Among the ten genes, we identified five

genes with a dominant haplotype in Australian varieties (Fig-

ure 1a). We revealed two distinctive haplotypes for HvPhyC.

Clipper, Stirling, Morex, Hockett and RGT Planet share a

haplotype (H1) characterized by an SNP mutation (G) in exon 1

and a 24 bp deletion in exon 4 (Figure 1a), and this haplotype is

dominant in Australian varieties. For HvCry1b, Australian domi-

nant haplotype H1 is characterized by a 7-bp insertion in exon 1

and an SNP (T) in exon 2. All European or North American

cultivars carry haplotype (H2) with a 7-bp deletion and an SNP (G)

(Figure 1a). A discriminant analysis revealed a proportion of

Australian barley accessions having an overlapping genetic

composition of HvCry1b not with European but with African

barley (Methods S5, Figure S3), suggesting a possible non-

European origin of Australia’s dominant haplotype in HvCry1b.

Australian barley production regions are exposed to stronger

solar radiation than European and North American main barley-

growing regions (Figure 1b; Figure S4), which may have driven the

significant differentiation in cryptochromes and phytochromes

genes, such as HvCry1b and HvPhyC. For the HvPPD-H1 gene,

Clipper, Stirling and European winter barley Igri share a haplotype

with a 9-bp insertion in the 50UTR region and 14 SNPs. Apart from

the distinctive variants identified in the coding region of HvPPD-

H1, we have identified haplotype-specific variants in its promoter

region. Changes in gene promoter regions and 50UTR region could

lead to differentiated phenotypes (Chen et al., 2022).

The gene HvCEN is a crucial regulator of flowering time in

barley and has played an essential role in the agricultural

expansion of barley cultivation. Clipper, Stirling and Igri share a

haplotype (H1) with the previously reported SNP (G/C) in exon 4

encoding the amino acid Pro135 (HII-Pro135, Comadran

et al., 2012) that is most common among Australian cultivars

(Figure 1a). The 135Ala type was found in the other four

genomes. Haplotype-specific variants are also present in the

promoter region of HvCEN with possible functional implications

on cis-regulatory elements involved in light responsiveness and

hormone response. Research suggests that the haplotype con-

taining the Pro135 mutation in HvCEN is favoured in the

European Mediterranean conditions because it confers early

flowering to escape terminal drought (Fern�andez-Calleja

Figure 1 (a) Haplotypes of five critical genes associated with heading date and photoperiod sensitivity in barley from Australia, Europe, and North

America. The light-regulated flowering pathway followed Cao et al. (2021). The proportion of haplotypes was estimated by analysing 56 varieties

(Table S12). Cis-regulatory elements were determined using the webtool PlantCare (Lescot et al., 2002). (b) Yearly total solar irradiance in Australian,

European and Australian major barley-growing regions. (c) Phenotypic effect of genotype in Australian barley and European barley in recombination

inbreeding line from crossing Australian barley variety Hindmarsh with European variety RGT Planet. Trail locations are given in Table S8. Lowercase letters

indicate significant differences between genotypes (P < 0.05).
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et al., 2021). Like the Mediterranean region, climate conditions in

temperate Australia are also characterized by hot and dry

summers. The 135Ala-encoding haplotype is dominant in North

American barley and those from a high latitude in Europe. Our

results thus demonstrate the convergent selection of HvCEN in

similar environments during the expansion from Europe to

Australia and North America.

We verified the phenotypic effect of Australian genotypes of key

phenology genes with a recombinant inbred lines population

developed from crossing the Australian barley variety Hindmarsh�
with the European variety RGT Planet� (Methods S6). We gener-

ated a genetic map with the 270 recombinant inbred lines and

evaluated their phenology and yield traits in six trials (Table S8). QTL

mapping suggested that, for eight genetic markers, the Australian

genotype (Hindmarsh) was associated with faster development or

earlier flowering in at least one trial (P < 0.05, t-test; Figure 1c).

Four phenology genes, including HvCEN, were revealed to be

within 0.5 cM of the eight genetic markers (Table S9). Australian

genotype of the geneHvCENwas also associated with higher grain

yield (P < 0.05, t-test; Figure 1c).

Australian barley is photoperiod-sensitive, which is beneficial in

growth conditions that require barley to flower at a time with

reliable rainfall, irrespective of the sowing date. In trials with

different sowing times (30 days apart; Methods S7). Australian

barley flowered at a relatively stable calendar date, irrespective of

the sowing date, compared to the European varieties (Figure S5;

Table S10). For Australian barley, the photoperiod sensitivity

seemed to confer an advantage in environments with low and

unpredictable rainfall in the sowing time (Figure S5d) and

probable hot weather during maturation in the maturation stage

(Figure S5e). We finally examined the influence on the earliness of

heading date and photoperiod sensitivity of the haplotype of the

five genes and observed differentiated phenotypes of haplotypes

in two genes. Haplotype H1 (HII-Pro135, Comadran et al., 2012)

of HvCEN, the dominant haplotype in Australia, was associated

with early flowering in five (out of seven) environments in the

field trials (Figure S5; Table S11). Haplotype H1 of HvPhyC, the

dominant haplotype in Australia, promoted early flowering time

in late sowing by 5 days on average (Figure S5).

In summary, barley adaptation in the Australian environment

involves selecting and subsequently enriching pre-existing genetic

variants within the European gene pool. Breeding activities have

also introduced non-European haplotypes. Selection for suitably

adapted barley varieties in Australia has led to the fixation of

several genes in flowering regulatory pathways. Australian

varieties are dominated by one haplotype in each gene. Identi-

fying these genes and haplotypes deepens our understanding of

how breeding selections have shaped the genome architecture in

Australian barley during its transition from Old World to New

World.
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